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Abstract
Pattern classification of human brain activity provides unique insight into the neural under-

pinnings of diverse mental states. These multivariate tools have recently been used within

the field of affective neuroscience to classify distributed patterns of brain activation evoked

during emotion induction procedures. Here we assess whether neural models developed to

discriminate among distinct emotion categories exhibit predictive validity in the absence of

exteroceptive emotional stimulation. In two experiments, we show that spontaneous fluctua-

tions in human resting-state brain activity can be decoded into categories of experience

delineating unique emotional states that exhibit spatiotemporal coherence, covary with indi-

vidual differences in mood and personality traits, and predict on-line, self-reported feelings.

These findings validate objective, brain-based models of emotion and show how emotional

states dynamically emerge from the activity of separable neural systems.

Author Summary

Functional brain imaging techniques provide a window into neural activity underpinning
diverse cognitive processes, including visual perception, decision-making, and memory,
among many others. By treating functional imaging data as a pattern-recognition problem,
similar to face- or character-recognition, researchers have successfully identified patterns
of brain activity that predict specific mental states; for example, the kind of an object being
viewed. Moreover, these methods are capable of predicting mental states in the absence of
external stimulation. For example, pattern-classifiers trained on brain responses to visual
stimuli can successfully predict the contents of imagery during sleep. This research shows
that internally mediated brain activity can be used to infer subjective mental states; how-
ever, it is not known whether more complex emotional mental states can be decoded from
neuroimaging data in the absence of experimental manipulations. Here we show that
brain-based models of specific emotions can detect individual differences in mood and
emotional traits and are consistent with self-reports of emotional experience during inter-
mittent periods of wakeful rest. These findings show that the brain dynamically fluctuates
among multiple distinct emotional states at rest. More practically, the results suggest that
brain-based models of emotion may help assess emotional status in clinical settings,
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particularly in individuals incapable of providing self-report of their own emotional
experience.

Introduction
Functional neuroimaging offers unique insight into how mental representations are encoded in
brain activity [1,2]. Seminal cognitive neuroscience studies demonstrated that distributed pat-
terns of cortical activity measured with functional magnetic resonance imaging (fMRI) contain
information capable of differentiating among visual percepts, including object categories [3]
and basic visual features [4]. Extending findings from these studies, subsequent work demon-
strated that machine learning models trained on stimulus-evoked brain activity, termed
“decoding” or “mind-reading” [5], can be used to predict the contents of working memory [6–
8] and mental imagery [9,10], even during sleep [11]. Thus, pattern recognition approaches
can identify defining features of mental processes, even when driven solely on the basis of
endogenous brain activity. The approach was further shown to accurately discriminate among
multiple cognitive processes (e.g., decision-making, working memory, response inhibition,
among others) in independent subjects [12], establishing the efficacy of assessing diverse men-
tal states with fMRI across individuals.

Paralleling cognitive studies decoding task-evoked brain activity, multivariate decoding
approaches have recently been used to map patterns of neural activity evoked by emotion elici-
tors onto discrete feeling states [13,14]. However, a key piece of missing evidence is whether
categorically distinct emotional brain states occur intrinsically [15,16] in the absence of exter-
nal eliciting stimuli. If so, then it should be possible to classify the emotional status of a human
being based on analysis of spontaneous fluctuations of brain activity during rest. Successful
classification would validate multivariate decoding of unconstrained brain activity and pro-
vides insight into the nature of emotional brain activity during the resting state.

Adapting the logic of other cognitive imaging studies [16,17], we postulate that the presence
of spontaneous emotional brain states should be detectable using multivariate models derived
from prior investigations of emotion elicitation. We previously developed decoding algorithms
to classify stimulus-evoked responses to emotionally evocative cinematic films and instrumen-
tal music [13]. These neural models (Fig 1) accurately classify patterns of neural activation
associated with six different emotions (contentment, amusement, surprise, fear, anger, and sad-
ness) and a neutral control state in independent subjects, generalizing across induction modal-
ity. Importantly, these neural biomarkers track the subjective experience of discrete emotions
independent of differences in the more general dimensions of valence and arousal [18]. By
indexing the extent to which a pattern of neural activation to extrinsic stimuli reflects a specific
emotion, these models can be used to test whether intrinsic spatiotemporal patterns of brain
activity correspond to stimulus-evoked emotional states.

Here, we evaluate whether these neural models of discrete emotions generalize to spontane-
ous brain activation measured via fMRI in two experiments. The first experiment assesses if
model predictions are convergent with individual differences in self-reported mood and emo-
tional traits. Because individual differences are linked to mental health and subjective well-
being [19–21], this evaluation provides insight into the potential clinical utility of quantifying
spontaneous emotional states, as they may be associated with risk factors for mental illness.
The second experiment employs an experience sampling procedure to evaluate whether model
predictions based on brain activity during periods of rest are congruent with on-line measures
of emotional experience. Together, these studies probe how brain-based models of specific
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emotion categories quantify changes in extemporaneous affect both between and within
individuals.

Results

Classification of Resting-State Brain Activity
We applied the multivariate models of emotional experience to brain activation acquired from
young adults during resting-state fMRI (n = 499; Fig 2A). Two consecutive runs of resting-
state scans were acquired, spanning a total duration of 8.53 min. Following preprocessing of
data, we computed the scalar product of the resting-state signal and emotion category-specific
model weights at every time point of data acquisition. This procedure yielded scores that reflect
the relative evidence for each of seven emotional states across the full scanning period. A con-
firmatory analysis revealed that voxels distributed across the whole brain informed this predic-
tion, as opposed to activity in a small number of brain regions (S1 Fig).

Fig 1. Distributed patterns of brain activity predict the experience of discrete emotions. (A) Parametric
maps indicate brain regions in which increased fMRI signal informs the classification of emotional states. See
[13] for details of the development and validation of these neural decoding models. (B) Sensitivity of the
seven models. Error bars depict 95% confidence intervals. The data underlying this figure can be found in S1
Data.

doi:10.1371/journal.pbio.2000106.g001
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If emotional brain states occur spontaneously, the frequency of classifications from our
decoding models should be more varied than the uniform distribution that would be expected
by chance. To test this hypothesis, we sought to identify whether the total time (or absolute fre-
quency) in each state differed across emotion categories. Such an analysis informs the degree to
which discrete emotional brain states may spontaneously occur and, by extension, could con-
tribute to the identification of individual differences that map onto the likelihood of experienc-
ing specific spontaneous states. To perform this comparison, we identified the single model
with the maximum score at each time point (one-versus-all classification) and summed the
number of time points assigned to each category. The frequency of emotional states clearly

Fig 2. Emotional states emerge spontaneously during resting-state scans. (A) Procedure for classification of resting-
state data. Scores are computed by taking the scalar product of preprocessed data and regression weights from decoding
models. (B) Frequency distributions for the classification of all seven emotional states (n = 499). The mean, 25th, and 75th
percentiles are indicated by black lines. The solid gray line indicates the number of trials that would occur from random
guessing. The data underlying this figure can be found in S1 Data. The raw fMRI resting state data can be obtained from
https://www.haririlab.com/projects.

doi:10.1371/journal.pbio.2000106.g002
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differed across categories (Fig 2B, χ2 = 1491.52, P< .0001, Friedman test), in contrast to the
uniform distribution that would be expected if emotional brain-states did not occur in sponta-
neous activity (see S2 Fig).

Follow-up comparisons revealed that neutral states occurred more frequently than chance
rates (20.1 ± 3.59% [s.d.], z = 20.50, Punc = 2.03E-93), followed by states of surprise
(18.37 ± 3.87% [s.d.], z = 16.38, Punc = 2.47E-60) and amusement (14.71 ± 3.78% [s.d.],
z = 1.25, Punc = 0.21). States of sadness (13.49 ± 3.76% [s.d.], z = -3.31, Punc = 9.24E-4), fear
(13.26 ± 3.42% [s.d.], z = -5.28, Punc = 1.28E-7), and anger (11.31 ± 3.62% [s.d.], z = -13.07,
Punc = 4.78E-39) occurred with lower frequency, while states of contentment occurred the least
often (8.74% ± 3.42% [s.d.], z = -19.61, Punc = 1.33E-85; see Table 1).

Although patterns of neural activation were most often classified as neutral as a whole, it is
possible that consistent fluctuations in the time course of emotional states occur against this
background. Research on MRI scanner-related anxiety has shown that self-report [22,23] and
peripheral physiological [24] measures of anxiety peak at the beginning of scanning, when sub-
jects first enter the scanner bore. This literature predicts that brain states indicative of fear
should be most prevalent at the beginning of resting-state runs, and that neutral states should
emerge over time, given their overall high prevalence (Fig 2B).

To assess gradual changes in the emotional states over time, we performed Friedman tests
separately for each emotion category, all of which revealed significant effects of time (see S1
Table). Next, we quantified the direction of these effects using general linear models to predict
classifier scores using scan time as an input. We found the scores for fear decreased over time

Table 1. Pairwise comparisons of classification frequency ranks for the emotionmodels.

Model 1 Model 2 Lower Bound Estimate Upper Bound Punc

Content Amusement -2.836 -2.422 -2.008 2.601E-69

Content Surprise -4.199 -3.785 -3.370 2.310E-168

Content Fear -2.199 -1.785 -1.370 7.583E-38

Content Anger -1.445 -1.031 -0.617 8.165E-13

Content Sad -2.291 -1.877 -1.463 8.186E-42

Content Neutral -4.771 -4.357 -3.943 7.192E-223

Amusement Surprise -1.777 -1.363 -0.949 3.265E-22

Amusement Fear 0.223 0.637 1.051 6.157E-05

Amusement Anger 0.977 1.391 1.805 4.001E-23

Amusement Sad 0.131 0.545 0.959 1.335E-03

Amusement Neutral -2.349 -1.935 -1.521 2.045E-44

Surprise Fear 1.586 2.000 2.414 1.999E-47

Surprise Anger 2.339 2.754 3.168 1.979E-89

Surprise Sad 1.494 1.908 2.322 3.404E-43

Surprise Neutral -0.986 -0.572 -0.158 5.662E-04

Fear Anger 0.339 0.754 1.168 6.790E-07

Fear Sad -0.506 -0.092 0.322 1.000E+00*

Fear Neutral -2.986 -2.572 -2.158 4.128E-78

Anger Sad -1.260 -0.846 -0.432 1.151E-08

Anger Neutral -3.740 -3.326 -2.912 3.629E-130

Sad Neutral -2.894 -2.480 -2.066 1.189E-72

Punc = uncorrected P value.

*does not survive FDR correction for multiple comparisons. Estimates reflect the difference in rank for Model 1 versus Model 2

doi:10.1371/journal.pbio.2000106.t001
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(b̂ ¼ �0:001, t498 = -4.92, Punc = 1.20E-006, Fig 3 gray lines), whereas neutral states exhibited

an increasing trend throughout the scanning period (b̂ ¼ 0:0017, t498 = 7.36, Punc = 7.66E-
013), consistent with predictions (additional effects were observed for scores for contentment

[b̂ ¼ 0:0017, t498 = 7.37, Punc = 7.05E-13], surprise [b̂ ¼ 0:0010, t498 = 4.07, Punc = 5.51E-05],

anger [b̂ ¼ �0:0007, t498 = -3.36, Punc = 0.00085], and sadness [b̂ ¼ �0:0034, t498 = -15.59,
Punc < 2.52E-038]).

To determine whether emotional states exhibited consistent dynamics over the course of
the scanning period, we fit smoothing spline models [25] for each subject and assessed the cor-
relation between each subject and the average time course of other subjects in a cross-valida-
tion procedure. This analysis showed that there is substantial moment-to-moment variability
in the time course of emotional states across subjects (which cannot simply be explained by
scaling differences in the emotion models or resting-state data; see S3 Fig). Consistent with the
linear models using time as a predictor, evidence for neutral brain states was most prevalent in
the second scanning session, especially during a peak at the beginning of the run, whereas the
time course for fear peaked at the beginning of the first run and decreased throughout the scan-
ning session. The model for surprise exhibited a similar time course as neutral states but peaked
at the end of the second run. Additionally, this analysis showed that evidence for sad classifica-
tions peaked in the middle of the first run and decreased over time. Overall, these time series
revealed a gradual change in evidence from negative emotions (fear and sadness in run 1) to
non-valenced or bi-valenced emotions (neutral and surprise in run 2).

Fig 3. Emotional states exhibit coherence during resting-state scans.Gray circles reflect the sample mean classification scores for
all seven emotions (n = 499). Thick colored lines display group-average predicted time course using smoothing splines (with bordering
95% confidence interval). Text overlay (rcv) indicates the average cross-validated correlation between splines fitted for each subject and
tested on the average fit of other subjects. Dashed lines indicate linear fits over time. Solid black dots indicate time points at which a
model has the highest proportion of classifications. Data are concatenated across two sessions of 256 s (solid vertical line). Note the
early peak for fear scores and general increases in neutral scores over time. The data underlying this figure can be found in S1 Data. The
raw fMRI resting state data can be obtained from https://www.haririlab.com/projects.

doi:10.1371/journal.pbio.2000106.g003
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To ensure that our emotion-specific brain states are not proxies for more general resting-
state networks thought to subserve other functions, we examined the spatial overlap between
our models and those commonly derived by connectivity-based analysis of resting-state fMRI
data [26]. On average, we observed little overlap (Jaccard index = 13.1 ± 1.97% [s.d.]; range
10.8%–16.7%) with the seven most prominent networks found in resting-state data, implicat-
ing a substantial degree of independence.

To further establish the construct validity of the spontaneous emotional brain states, we rea-
soned that their incidence should vary with individual differences in self-reported mood and
personality traits associated with specific emotions. We assayed depressive mood with the Cen-
ter for Epidemiologic Studies Depression Scale (CESD) [27] and state anxiety using the State-
Trait Anxiety Inventory State Version (STAI-S) [28], instructing participants to indicate how
they felt during the resting-state scan itself. Binomial regression models revealed that higher

depression scores were associated with increases in the frequency of sadness (b̂ ¼ 0:0025,
t497 = 2.673, Punc = .0075, Fig 4A, see S4 Fig for scatter plots of predictions) and no other emo-
tional state (all Punc > .24). State anxiety was associated with increasing classifications of fear

(b̂ ¼ 0:0033, t497 = 2.608, Punc = .0091) and decreasing frequency of contentment

(b̂ ¼ �0:0031, t497 = -2.015, Punc = .0439). Viewing these beta estimates as odds ratios (com-

puted as eb̂) reveals how a one-unit increase in self-reported mood is associated with differ-
ences in the occurrence of spontaneous emotional states. Applying this approach to CESD
scores reveals that individuals with a score of 16 (the cutoff for identifying individuals at risk
for depression) have 5.92% increased odds of being in a sad state compared to those with a
score of 0. In more practical terms, this corresponds to approximately seven extra minutes a
day of exhibiting a brain state that would be classified as sadness.

Drawing from the Revised NEO Personality Inventory (NEO-PI-R) [29], we focused per-
sonality trait assessment on the specific Neuroticism subfacets of Anxiety, Angry Hostility,
and Depression, due to their discriminant validity [30], heritability [31], universality [32], and
close theoretical ties to the experience of fear, anger, and sadness. We found that increasing

Anxiety scores were associated with more frequent classification of fear (b̂ ¼ 0:003,

t497 = 1.978, Punc = 0.0479, Fig 4B) and fewer classifications of anger (b̂ ¼ �0:004,
t497 = -2.407, Punc = 0.0161). Angry Hostility scores were positively associated with the num-

ber of anger classifications (b̂ ¼ 0:0042, t497 = 2.400, Punc = 0.0164). Depression scores were

positively associated with the frequency of fear (b̂ ¼ 0:003, t497 = 2.058, Punc = 0.0396) and

sadness (b̂ ¼ 0:0037, t497 = 2.546, Punc = 0.0109). These results provide converging evidence
across both state and trait markers that individual differences uniquely and differentially bias
the spontaneous occurrence of brain states indicative of fear, anger, and sadness.

Concordance with Subjective Experience
Finally, we examined whether the predictions of our decoding models were consistent with self-
report of emotional experience during periods of unconstrained rest. We conducted a separate
fMRI experiment in which an independent sample of young adult participants (n = 21) per-
formed an experience sampling task in the absence of external stimulation (Fig 5A). Participants
were instructed to rest and let their mind wander freely with their eyes open during scanning.
Following intervals of rest of at least 30 s, a rating screen appeared during which participants
moved a cursor to the location on the screen that best indicated how they currently felt.

If spontaneous emotional states are accessible to conscious awareness, then scores should
be greater for emotion models congruent with self-report relative to scores for models incon-
gruent with self-report. Contrasting emotion models in this manner is advantageous from a
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signal detection standpoint because it minimizes noise by averaging across emotions, as some
were reported infrequently or not at all in some subjects (see [33] for an analogous approach
to predict the contents of memory retrieval during similarly unconstrained free-recall). To
test our hypothesis, we extracted resting-state fMRI data from the 10-s interval preceding
each self-report query and applied multivariate models to determine the extent to which evi-
dence for the emotional brain states in this window predicted the participants’ conscious emo-
tional experience.

Fig 4. Individual differences in mood and personality modulate the occurrence of spontaneous
emotional brain states. (A) Differences in depressive and anxious mood are associated with increases in
the frequency of sad and fear classifications during rest. (B) Emotional traits of Anxiety, Angry Hostility, and
Depression track differences in the frequency of fear, anger, and sad classifications (n = 499, error bars
reflect standard error, * indicates effects significant at Punc < .05). The data underlying this figure can be
found in S1 Data. The raw fMRI resting state data can be obtained from https://www.haririlab.com/projects.

doi:10.1371/journal.pbio.2000106.g004
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Consistent with our hypothesis, we found that scores for models congruent with self-report
were positive (0.016 ± 0.0093 [s.e.m.], z = 2.068, Punc = 0.0386; Wilcoxon signed rank test),
whereas scores for incongruent models were negative (-0.0048 ± 0.0017 [s.e.m.], z = -3.041,
Punc = 0.0024). Classification of individual trials into the seven emotion categories exhibited an
overall accuracy of 27.9 ± 2.1% (s.e.m.) of trials, where chance agreement is 21.47% (Punc = 0.001;
binomial test). Not only do these results demonstrate that classification models are sensitive to
changes in emotional state reported by participants, but also that there is selectivity in their pre-
dictions, as negative scores indicate evidence against emotion labels that are incongruent with
self-report. Establishing both sensitivity and selectivity is important for the potential use of these
brain-based models as diagnostic biomarkers of emotional states.

As an additional validation of our decoding models, we examined the correspondence
between the prevalence of individual emotional brain states as detected via pattern classification
and participant self-report. Classifications based on self-report and multivariate decoding
yielded similar frequency distributions (Fig 5C), in which neutral and amusement were the most
frequent. We found a positive correlation between the frequency of classifications based on par-
ticipant ratings and multivariate decoding (r = .3876 ± 0.102 [s.e.m.], t20 = 2.537, Punc = .0196;
one sample t test), further demonstrating a link between patterning of brain states and subjective
ratings of emotional experience in the absence of external stimuli or contextual cues.

Discussion
Converging findings from our experiments provide evidence that brain states associated with
distinct emotional experiences emerge during unconstrained rest. Whereas prior work has

Fig 5. Spontaneous emotional brain states exhibit correspondence with self-report. (A) Participants
(n = 21) participated in an experience sampling task in which they reported their current emotional state at
random intervals exceeding 30 s during fMRI scanning. The five samples of data (lasting 10 s, TR = 2 s)
preceding each rating were used to compute predictions of emotional state using multivariate decoding models.
(B) Scores for classification models congruent with self-report are greater than incongruent models (z = 2.311,
Punc = 0.0208; Wilcoxon signed rank test). Classification scores are calculated based on the inner product of
neural activity and classifier weights and indicate the relative evidence for the different emotion models. (C) The
frequency of classifications frommultivariate models significantly correlates with those made by participant self-
report (r = .3876 ± 0.102 [s.e.m.], t20 = 2.537, Punc = .0196; one sample t test). Gray line indicates best-fitting
least-squares line for group mean. In all panels, error bars reflect standard error of the mean. The data
underlying this figure can be found in S1 Data.

doi:10.1371/journal.pbio.2000106.g005
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decoded stimulus-evoked responses to emotional events, our study demonstrates that sponta-
neous neural activity dynamically fluctuates among multiple emotional states in a reliable man-
ner over time. Observing such coherent, emotion-specific patterns in spontaneous fMRI
activation provides evidence to support theories that posit emotions are represented categori-
cally in the coordinated activity of separable neural substrates [34,35].

Validating the neural biomarkers in the absence of external stimulation suggests that they
track information of functional significance, and do not merely reflect properties of the sti-
muli used in their development. It is possible that these classifiers detect the endogenous activ-
ity of distributed neural circuits, consistent with recent views that emotions are not
represented in modular functional units [36,37]. However, the extent to which such activity is
the result of innate emotion-dedicated circuitry, a series of cognitive appraisals, or construc-
tive processes shaped by social and environmental factors remains to be determined (for a
review of these viewpoints, see [38]). Regardless of the relative influence of such factors, the
present findings suggest that the emotion-specific biomarkers track the expression of func-
tionally distinct brain systems, as opposed to idiosyncrasies of the particular machine-learning
problem.

Our findings complement recent studies demonstrating that a variety of emotion manipula-
tions have lasting effects on resting brain activity [39–41]. For instance, one study revealed ele-
vated striatal activity following gratifying outcomes in a decision-making task—an effect that
was diminished in individuals with higher depressive tendencies [39]. Because these effects
immediately followed emotional stimulation, they could plausibly reflect regulatory processes
or lingering effects of mood. The present results, on the other hand, show that resting brain
activity transiently fluctuates among multiple emotional states and that these fluctuations vary
depending on the emotional status of an individual. Thus, emotional processes unfolding at
both long and short time scales likely contribute to spontaneous brain activity.

Findings from our resting state experiment stand in contrast to recent work investigating
emotion-specific functional connectivity [42]. In this study, whole-brain resting-state func-
tional connectivity was assessed using seeds identified from a meta-analytic summary of emo-
tion research [43]. This latter approach failed to reveal unique patterns of resting-state
connectivity for individual emotions but showed that seed regions were commonly correlated
with domain-general resting-state networks, such as the salience network [44]. In light of the
present results, it is important to consider methodological differences between studies. Seed-
based correlation highlights connectivity between brain regions whose time course of activa-
tion is maximally similar to the activity of a small number of voxels (which are averaged
together to create a single time series), whereas pattern classification identifies combinations
of voxels that maximally discriminate among mental states. Because individual voxels sample
diverse neural populations [45], it is plausible that seed-based correlation is biased towards
identifying networks that have large amplitudes in seeded regions as opposed to exhibiting
specificity (e.g., see [46]). Thus, our approach may have greater sensitivity to detect discrimi-
nable categorical patterns.

Results of the experience sampling study provide external validation of our emotion-specific
biomarkers [13]. Consistent with the resting-state study, the overall distribution of emotional
states was clearly non-uniform, and classifications of neutral states occurred with high fre-
quency. Beyond these commonalities, the inclusion of behavioral self-report led to differences
in emotion-related brain activity. States of contentment and amusement were more frequently
predicted during experience sampling compared to resting-state (46.31% versus 23.45%), a
finding that was corroborated by higher ratings for these emotions in the self-report data. It is
possible that this difference in the frequency of positive brain states is the result of a self-pre-
sentation bias [47], wherein participants may have employed emotion regulation in order to
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project a more positive image. Alternatively, it is possible that the self-reporting task require-
ment elicited more introspection between trials, which contributed to the pattern of altered
emotional states [48]. Future work will be necessary to fully characterize how such cognitive-
emotional interactions shape the landscape of emotional brain states [36,49].

We found that individual differences in mood states and personality traits are associated
with the relative incidence of brain states associated with fear, anger, and sadness. These find-
ings further establish the construct validity of our brain-based models of emotion and link sub-
facets of Neuroticism to the expression of emotion-specific brain systems. Given their
sensitivity to individual differences linked to the symptomology of anxiety and depression,
spontaneous emotional brain states may serve as a novel diagnostic tool to determine suscepti-
bility to affective illness or as an outcome measure for clinical interventions aimed at reducing
the spontaneous elicitation of specific emotions. This tool may be particularly useful to objec-
tively assess the emotional status of individuals who do not have good insight into their emo-
tions, as in alexithymia, or for those who cannot report on their own feelings, including
patients in a vegetative or minimally conscious state.

Materials and Methods

Ethics Statement
All participants provided written informed consent in accordance with the National Institutes
of Health guidelines as approved by the Duke University IRB. The resting state experiment was
approved as part of the Duke Neurogenetics Study (Pro00019095) with an associated database
(Pro00014717). The experience sampling project was approved separately (Pro00027404).

Neural Biomarkers of Emotional States
Classification of emotional states was performed using neural biomarkers that were devel-
oped based on blood oxygen level dependent (BOLD) responses to cinematic films and
instrumental music [13]. This induction procedure was selected because it reliably elicits
emotional responses over a 1 to 2 min period, as opposed to longer-lasting moods. These
models were developed to identify neural patterning specific to states of contentment,
amusement, surprise, fear, anger, and sadness (in addition to a neutral control state). These
particular emotions were modeled to broadly sample both valence and arousal, as selecting
common sets of basic emotions (e.g., fear, anger, sadness, disgust, and happiness) undersam-
ples positive emotions. In selecting these particular emotions, we verified that the accuracy
of these models tracked the experience of specific emotion categories (average R2 across
emotions = .57) independent of subjective valence and arousal. Thus, the models offer
unique insight into the emotional state of individuals and characterize the likelihood they
would endorse each of the seven emotion labels, independent of general factors such as
valence or arousal.

Resting-State Experiment
A total of 499 subjects (age = 19.65 ± 1.22 years [mean ± s.d.], 274 women) were included as
part of the Duke Neurogenetics Study (DNS), which assesses a wide range of behavioral and
biological traits among healthy, young adult university students. For access to this data, see
information provided in S1 Text. This sample was independent of that used to develop the
classification models. This sample size is sufficient to reliably detect (β = .01) a moderate effect
(r = .2) with a type-I error rate of .05, which is particularly important when studying individ-
ual differences in neural activity. All participants provided informed consent in accordance
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with Duke University guidelines and were in good general health. The participants were free
of the following study exclusions: (1) medical diagnoses of cancer, stroke, head injury with
loss of consciousness, untreated migraine headaches, diabetes requiring insulin treatment,
chronic kidney or liver disease, or lifetime history of psychotic symptoms; (2) use of psycho-
tropic, glucocorticoid, or hypolipidemic medication; and (3) conditions affecting cerebral
blood flow and metabolism (e.g., hypertension). Diagnosis of any current DSM-IV Axis I dis-
order or select Axis II disorders (antisocial personality disorder and borderline personality
disorder), assessed with the electronic Mini International Neuropsychiatric Interview [50]
and Structured Clinical Interview for the DSM-IV subtests [51], were not an exclusion, as the
DNS seeks to establish broad variability in multiple behavioral phenotypes related to psycho-
pathology. No participants met criteria for a personality disorder, and 72 (14.4%) participants
from our final sample met criteria for at least one Axis I disorder (10 Agoraphobia, 33 Alcohol
Abuse, 3 Substance Abuse, 25 Past Major Depressive Episode, 5 Social Phobia). However, as
noted above, none of the participants were using psychotropic medication during the course
of the DNS.

Participants were scanned on one of two identical 3 Tesla General Electric MR 750 system
with 50-mT/m gradients and an eight channel head coil for parallel imaging (General Elec-
tric, Waukesha, Wisconsin, USA). High-resolution 3-dimensional structural images were
acquired coplanar with the functional scans (repetition time [TR] = 7.7 s; echo time
[TE] = 3.0 ms; flip angle [α] = 12°; voxel size = 0.9 × 0.9 × 4 mm; field of view [FOV] = 240
mm; 34 contiguous slices). For the two 4 min, 16 s resting-state scans, a series of interleaved
axial functional slices aligned with the anterior commissure—posterior commissure plane
were acquired for whole-brain coverage using an inverse-spiral pulse sequence to reduce sus-
ceptibility artifact (TR = 2000 ms; TE = 30 ms; α = 60°; FOV = 240 mm; voxel size = 3.75 ×
3.75 × 4 mm; 34 contiguous slices). Four initial radiofrequency excitations were performed
(and discarded) to achieve steady-state equilibrium. Participants were shown a blank gray
screen and instructed to lie still with their eyes open, think about nothing in particular, and
remain awake.

Preprocessing of all resting-state fMRI data was conducted using SPM8 (Wellcome Depart-
ment of Imaging Neuroscience). Images for each subject were slice-time-corrected, realigned to
the first volume in the time series to correct for head motion, spatially normalized into a stan-
dard stereotactic space (Montreal Neurological Institute template) using a 12-parameter affine
model (final resolution of functional images = 2 mm isotropic voxels), and smoothed with a 6
mm FWHMGaussian filter. Low-frequency noise was attenuated by high-pass filtering with a
0.0078 Hz cutoff.

Experience Sampling Experiment
A total of 22 subjects (age = 26.04 ± 5.16 years [mean ± s.d.], 11 women) provided informed
consent and participated in the study. Data from one participant was excluded from analyses
because of excessive head movement (in excess of 1 cm) during scanning. While no statistical
test was performed to determine sample size a priori, this sample size is similar to those dem-
onstrating a correspondence between self-report of affect and neural activity [13,52,53].

Participants engaged in an experience sampling task in which they rated their current feel-
ings during unconstrained rest. Participants were instructed to keep their eyes open and let
their mind wander freely and that a rating screen [54] would occasionally appear, which they
should use to indicate the intensity of the emotion that best describes how they currently feel.
This validated assay of emotional self-report consists of 16 emotion words organized radially
about the center of the screen. Four circles emanate from the center of the screen to each word
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(similar to a spoke of a wheel), which were used to indicate the intensity of each emotion by
moving the cursor about the screen. During four runs of scanning, participants completed 40
trials (10 per run) with an inter-stimulus interval (ISI) of 30 s plus pseudo-random jitter (Pois-
son distribution, λ = 4 s).

Self-report data were transformed from two-dimensional cursor locations to categorical
labels. Polygonal masks were created by hand corresponding to each emotion term on the
response screen. A circular mask in the center of the screen was created for neutral
responses. Because terms in the standard response screen did not perfectly match those in
the neural models, the item “relief” was scored as “content,” whereas “joy” and “satisfaction”
were scored as “amusement.” The items “surprise,” “fear,” “anger,” “sadness,” and “neutral”
were scored as normal.

Scanning was performed on a 3 Tesla General Electric MR 750 system with 50-mT/m gradi-
ents and an eight channel head coil for parallel imaging (General Electric, Waukesha, Wiscon-
sin, USA). High-resolution images were acquired using a 3D fast SPGR BRAVO pulse
sequence (TR = 7.58 ms; TE = 2.936 ms; image matrix = 2562; α = 12°; voxel size = 1 × 1 × 1
mm; 206 contiguous slices) for coregistration with the functional data. These structural images
were aligned in the near-axial plane defined by the anterior and posterior commissures.
Whole-brain functional images were acquired using a spiral-in pulse sequence with sensitivity
encoding along the axial plane (TR = 2000 ms; TE = 30 ms; image matrix = 64 × 64; α = 70°;
voxel size = 3.8 × 3.8 × 3.8 mm; 34 contiguous slices). Four initial radiofrequency excitations
were performed (and discarded) to achieve steady-state equilibrium.

Processing of MR data was performed using SPM8 (Wellcome Department of Imaging Neu-
roscience). Functional images were slice-time-corrected, spatially realigned to correct for
motion artifacts, coregistered to high resolution anatomical scans, and normalized to Montreal
Neurologic Institute (MNI) space using high-dimensional warping implemented in the VBM8
toolbox (http://dbm.neuro.uni-jena.de/vbm.html). Low-frequency noise was attenuated by
high-pass filtering with a 0.0078 Hz cutoff.

Statistical Analysis
To rescale data for classification, preprocessed time series were standardized by subtracting
their mean and dividing by their standard deviation. Maps of partial least squares (PLS)
regression coefficients from stimulus-evoked decoding models [13] were resliced to match the
voxel size of functional data. These coefficients are conceptually similar to those in multiple
linear regression, only they are computed by identifying a small number of factors (reducing
the dimensionality of the problem) that maximize the covariance between patterns of neural
activation and emotion labels (for specifics on their computation, see [55]). Classifier scores
were computed by taking the scalar product of functional data at each time point and PLS
regression coefficients from content, amusement, surprise, fear, anger, sad, and neutral mod-
els. Individual time points were assigned categorical labels by identifying the model with the
maximal score.

In order to determine if relatively focal or diffuse patterns of resting-state activity informed
classification, we computed importance maps for each subject (S1 Fig). This was accomplished
by calculating the voxel-wise product between PLS regression coefficients for each emotion
model and the average activity of acquisition time points labeled as the corresponding emotion.
We made inference on these maps by conducting a mass-univariate one-sample t test for each
of the seven models, thresholding at FDR q = .05.

To address the potential overlap of the emotion classification models and canonical resting-
state networks of the brain, we computed the maximal Jaccard index for each emotion model
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and the seven most prominent resting-state networks identified in Yeo et al [26]. This index is
computed as the intersection of voxels in the two maps (voxels above threshold in both maps)
relative to their union (the number of voxels above threshold in either map). Thresholds for
classification models were adaptively matched to equate the proportion of voxels assigned to
each resting state network.

When conducting inferential tests on classification frequency (count data), non-parametric
tests were conducted. To test whether classifications were uniformly distributed across the
emotion categories, a Friedman test was performed (n = 499 subjects, k = 7 emotions). Wil-
coxon signed-rank tests were performed to test for differences in frequency relative to chance
rates (14.3%) in addition to pairwise comparisons between emotion models, and corrected for
multiple comparisons based on the false-discovery rate.

Because the models have different levels of accuracy when used for seven-way classification
[13], we additionally conducted wavelet resampling of classifier scores in the time domain
[33,56] over 100 iterations to ensure that differences in the sensitivity of models did not bias
results. This procedure involved scrambling the wavelet coefficients (identified using the dis-
crete wavelet transform) of classifier scores (time series in Fig 3) to generate random time series
with similar autocorrelation as the original data. Classifications were then made on these surro-
gate time series, and Friedman tests were performed to test for differences in frequencies across
categories. This procedure yielded a null distribution for the chi-square statistic against which
the observed statistic on unscrambled data was compared.

To test whether classifier scores changed over time, Friedman tests were conducted on the
outputs of the emotion models separately (concatenating the time series across runs), as classi-
fier scores were found to violate assumptions of normality. Follow-up tests on the direction of
these changes (either as increases or decreases) were conducted using general linear models
with one constant regressor and another for linearly increasing time for each subject. Inference
on the parameter estimate for changes over time was made using a one-sample t test (498
degrees of freedom).

In addition to testing gradual changes over time, smoothing spline models [25] were used to
characterize more complex dynamics of emotional states. Because spline models are flexible
and may include a different number of parameters for each subject, cross-validation was con-
ducted to assess the coherence of spline fits across subjects. In this procedure, a smoothing
spline model was fit for each subject, and its Pearson correlation with the mean fit for all other
subjects was computed. The average of resulting correlations accordingly reflects the coherence
of nonlinear changes in emotional states across all subjects.

The influence of individual differences in mood and personality was assessed using general-
ized linear models with a binomial distribution and a logit link function. Multiple models were
constructed, each using a single measure from either the CESD, STAI, or facets from the
NEO-PI-R to predict the frequency of classifications for the seven emotion categories (seven
models per self-report measure). Inference on parameter estimates (characterizing relation-
ships between individual difference measures and classification frequency) was made using a t
distribution with 497 degrees of freedom.

To control for multiple comparisons, FDR correction (q = .05) [57,58] was applied for tar-
geted predictions. For individual differences in mood, this procedure included correction for
positive associations between the frequency of sad classifications and CESD scores and between
fear classification and STAI values (Pthresh = .0091). For differences in emotional traits, correc-
tion was applied to models predicting the frequency of fear classification on the basis of Anxi-
ety scores, anger classification using Angry Hostility scores, and sad classifications on the basis
of Depression scores (Pthresh = .0479). Scatterplots and predicted outcomes for these regression
analyses are displayed in S4 Fig.
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To assess concordance in the experience sampling study, classifier scores were averaged for
trials congruent and incongruent with self-report for each subject. For instance, all trials in
which a participant self-reported “fear,” the classifier outputs from the neural model predicting
fear were considered congruent, whereas the remaining six models were averaged as incongruent.
Because the frequency of self-report varied across emotions (e.g., endorsement of fear and sad-
ness were very infrequent), scores were averaged across all trials to reduce noise.

In a supplemental analysis, scores were extracted separately for all trials and classified by
identifying the model with the highest score. Accuracy was assessed on data from all subjects,
using self-reports of emotion as ground truth. Because the frequency of self-reported emotions
was non-uniform, chance agreement between self-report and neural models was calculated
based on the product of marginal frequencies, under the assumption of independent observer
classifications [59]. Inference on the observed classification accuracy was tested against this
value using the binomial distribution B(480, 0.2147). Due to infrequent self-reports of surprise,
fear, and anger, accuracy on individual models was not computed.

Scores were initially assessed by averaging the 10 s preceding each rating. Subsequent analy-
ses increasing the window length up to 20 s did not alter results. Because the scores for congru-
ent (p = 0.0186, Lilliefors test against normal distribution) and incongruent (p = 0.0453) trials
exhibited non-normal distributions, Wilcoxon signed rank tests were used to test each sample
against zero mean rank. The correspondence between the frequencies of classification labels
from self-report and neural decoding was assessed by computing the Pearson correlation for
each subject. The correlation coefficients were Fisher transformed and tested against zero using
a one-sample t test.

To ensure that population differences (i.e., inclusion of individuals with psychopathology)
did not contribute to differences in the prevalence of emotions in the resting-state and experi-
ence sampling studies, we re-calculated the frequency of classifications using repeated random
subsampling of healthy participants in the resting-state sample (1,000 iterations, sampling 21
participants without replacement). The average correlation between the healthy subsamples
and the full sample was very high (ravg = .981, s.d. = .013), making it unlikely that clinical status
accounts for differences in the frequency of classifications across studies.

Supporting Information
S1 Fig. Importance maps for resting-state experiment. Parametric maps of t-statistics (one-
sample t-test against 0) showing voxels whose activation (either positive or negative) contrib-
uted towards classification of (A) content, (B) amusement, (C) surprise, (D) fear, (E) anger, (F)
sad, and (G) neutral states. Importance maps were created for each subject by taking voxel-
wise product of classification weights and the mean activity of time-points assigned the corre-
sponding label. Voxels are thresholded at an FDR corrected q = .05. The raw fMRI resting state
data can be obtained from https://www.haririlab.com/projects.
(TIF)

S2 Fig. Null frequency distributions for the classification of all seven emotional states
(n = 499). (A) Colored distributions reflect the average frequency over 100 iterations of wavelet
resampling. The mean, 25th and 75th percentiles are indicated by black lines. The solid gray
line indicates the number of trials which would occur from random guessing. The range of the
axes are matched to those in Fig 2B for ease of comparison. (B) Distribution of χ2 statistics
across 100 iterations (Friedman test against uniform distribution), compared to that of the
unpermuted data (solid red line). The data underlying this figure can be found in S1 Data. The
raw fMRI resting state data can be obtained from https://www.haririlab.com/projects.
(TIF)
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S3 Fig. ℓ2-norms of models and data. (A) ℓ2-norms computed for each of the neural bio-
markers of emotion. The ℓ2-norm is calculated by taking the square root of the sum of squared
deviations across all voxels (i.e., Euclidean distance). These norms do not vary strongly across
emotion models, indicating that the outputs of classifiers are typically on the same scale. (B)
Mean (s.d.) of ℓ2-norms computed on the resting state data (n = 499 subjects). Each time-point
reflects a single data acquisition lasting two seconds. Solid vertical line demarcates scans from
the first and second run. The data underlying this figure can be found in S1 Data. The raw
fMRI resting state data can be obtained from https://www.haririlab.com/projects.
(TIF)

S4 Fig. Logistic regression models predicting the frequency of emotional states from indi-
vidual difference measures. (A) Associations between self-reported anxiety and fear classifica-
tions (left) and between depressive symptoms and sad classifications (right). (B) Associations
between the NEO scores for the Anxiety subfacet and fear classifications (left), between Angry
Hostility and anger classifications (middle), and between Depression and sad classifications
(right). Solid curves reflect the best fitting binomial model, semi-transparent curves reflect vari-
ation about the mean estimated by bootstrap resampling. Correlations between the estimated
and observed classification frequencies are displayed on the upper right of each panel. The data
underlying this figure can be found in S1 Data. The raw fMRI resting state data can be obtained
from https://www.haririlab.com/projects.
(TIF)

S1 Table. Friedman’s ANOVAs for changes in classification scores over time.
(XLSX)

S1 Data. Raw data underlying plots in Fig 1 (panel B), Fig 2 (panel B), Figs 3 and 4 (panels
A and B), Fig 5 (panels B and C), S2 Fig (panels A and B), S3 Fig (panels A and B), and S4
Fig (panels A and B).
(XLSX)

S1 Text. Data sharing restrictions explanation.
(DOCX)
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